
Legacy Remote Mode for HS, v. 0.1

Copyright © 2012-2013, Rayonix, L.L.C.

1

The Legacy Remote Mode for HS Detector Control

This manual explains how to set up a client compatible with the program hsserver_legacy.

Introduction

The legacy remote mode server is a method of controlling the Rayonix HS (High Speed) series

of detectors by emulating the old marccd style of remote mode. In this way the detector can be

controlled by the user’s control software. Data acquisition controls, such as changing binning,

collecting data images and data series, setting header information, and saving files are available

through this interface. An institution might prefer to use this mode if they have previously

controlled Rayonix detectors via marccd remote mode and want to quickly get going with

minimal changes to their control software.

Legacy remote mode communication diagram

Figure 1 – Legacy remote mode communication path

User’s control program (client)

Server (marccd_server_socket)

Program hsserver_legacy

} TCP/IP socket connection

} pipe connection

Detector hardware

craydl library

Detector control computer

Detector interface card

Legacy Remote Mode for HS, v. 0.1

Copyright © 2012-2013, Rayonix, L.L.C.

2

Configuring the legacy remote mode

The file /opt/rayonix/configuration/craydl/RemoteModeEmulator.conf contains the following

configurable variables (with suggested defaults in the provided config file).

 ServerEnvironment: if an environment variable is required by the control program, it

can be inserted here (usually not required)

 ServerCommand: usually marccd_server_socket.

 ServerArguments: the port number to be opened by the server. It should match that

looked for by the client. The sample client program provided uses port number 2002.

 ServerLog: not yet implemented at this time.

Typically no change would be required for these parameters.

The client program

A sample client program marccd_client_socket is included in the legacy remote mode files. It

functions like a telnet session to the socket program, into which text commands (described in the

next section) may be entered to drive hsserver_legacy. Users will need to incorporate this or a

similar client into the controlling program they wish to use.

Type ./marccd_client_socket to start the program. The user may try typing in the commands

below (such as get_state, or get_bin, etc.) in order to verify that indeed the hsserver_legacy

program is executing these commands.

Alternatively, for testing purposes a telnet session may be used to connect to the server program

and enter commands one at a time by hand. Typically the following command would be issued:

“telnet LOCALHOST [port number]”.

Remote commands

The program hsserver_legacy understands the following remote mode commands:

Remote Mode Command Effect

get_size hsserver_legacy will answer with the fast (x) and slow (y)

dimensions of the data frame.

get_size_bkg hsserver_legacy will answer with the fast (x) and slow (y)

dimensions of the stored background frame (0,0 if no background

frame is yet present).
get_bin hsserver_legacy will answer with the fast (x) and slow (y) binning

of the data frame.
set_bin,x,y hsserver_legacy will set the fast (x) and slow (y) binning of the

data frame.

Legacy Remote Mode for HS, v. 0.1

Copyright © 2012-2013, Rayonix, L.L.C.

3

start hsserver_legacy will start integrating data (stop clearing) on the

CCD.
readout,flag[,filename] hsserver_legacy will stop integrating and start reading the CCD;

given filename(s), it will queue the correction and writing of the

file to disk

Flag Action

0 read data into raw data frame storage

1 read data into background frame storage

2 read data into system scratch storage

3 read data into data frame storage and do

NOT correct [and write uncorrected frame]

dezinger,flag ***TO BE IMPLEMENTED*** hsserver_legacy will calculated

a "dezingered" frame from two stored frames. One of the source

frames is the System Scratch frame.

The second source frame and the destination are specified with the

flag.

Flag Action

0 use and store into the latest data frame.

1 use and store into the current background

frame

2 use and store into system scratch storage

(not useful; frame dezingered with itself)

correct hsserver_legacy will apply geometric and flatfield corrections to

the raw data frame.
writefile,filename,flag ***TO BE IMPLEMENTED*** hsserver_legacy will write out a

data frame to a file on disk. The parameter filename is the name

of the file to be written.

Flag Action

0 write raw file

1 write corrected file

abort

hsserver_legacy will abort the current operation. Normally this

would be done to stop integration and return the CCD to continuous

clear mode.

get_temp ***TO BE IMPLEMENTED*** Returns the current CCD

temperature, oe the highest (warmest) CCD temperature in a

detector with multiple CCDs

get_press ***TO BE IMPLEMENTED*** Returns the current pressure

inside the detector head

get_stability ***TO BE IMPLEMENTED*** Requires valid Baseline

stabilization mode license. See manual section describing Baseline

stabilization.
set_stability,target ***TO BE IMPLEMENTED*** Requires valid Baseline

stabilization mode license. See manual section describing Baseline

stabilization.
get_roi ***TO BE IMPLEMENTED*** Requires valid Region of

Interest mode license. See manual section describing Region of

Interest.

Legacy Remote Mode for HS, v. 0.1

Copyright © 2012-2013, Rayonix, L.L.C.

4

set_roi,x0,y0,x1,y1 ***TO BE IMPLEMENTED*** Requires valid Region of

Interest mode license. See manual section describing Region of

Interest.
header,header_data\n ***TO BE IMPLEMENTED*** hsserver_legacy will accept

header_data and interpret item=value pairs to be placed into the

data frame header. header_data consists of a list of item=value

pairs separated by commas and terminated by a newline (\n). The

following items are understood:

Parameter Type (Units)

detector_distance float (mm)

beam_x float (mm)

beam_y float (mm)

exposure_time float (sec)

start_phi float (deg)

rotation_axis string (omega, chi,

kappa, phi, gamma,

delta, or

xtal_to_detector)

rotation_range float (deg)

source_wavelength float (angstroms)

file_comments string

dataset_comments string

get_state hsserver_legacy will answer with the current state of the system.

For remote mode version 1, “state” has been superseded by the

more complete “status,” which is returned by the get_state

command. The command get_state will return the more complex

“status,” which includes the state in the lower 4 bits. Only the states

IDLE, ERROR and BUSY will ever be seen. See the section below

for the discussion of the version 1 protocol.

The integer numbered states possible in remote mode version 0 are:

State Number State

0 IDLE

6 UNAVAILABLE

7 ERROR

8 BUSY

set_state,state ***NOT IMPLEMENTED*** hsserver_legacy will set the state

to the desired state. This is for testing purposes only and has no use

in a normally functioning system.

Legacy Remote Mode for HS, v. 0.1

Copyright © 2012-2013, Rayonix, L.L.C.

5

shutter,flag hsserver_legacy will set the shutter state to either closed or open.

(Only if hsserver_legacy controls the shutter!) If the MarDTB is

used, this function controls the MarDTB shutter. Otherwise, it

controls the shutter attached to the shutter input (usually “Trigger”

connector) on the detector head.

Flag Action

0 manual/closed

Shutter signaled to close. Signal changes

according to “shutter,flag” command input.

1 manual/open

Shutter signaled to open. Signal changes

according to “shutter,flag” command input.

2 automatic/frame

Shutter signaled to open and close for each data

frame in a series.

3 automatic/series

Shutterless data collection mode. Shutter

signaled to open at the beginning of a series

(either timed or triggered) and signaled to close

after series is finished.

start_series_triggered,

[,exposure_parameter]

[,n_frames]

[,first_frame_number]

[,filename_base]

[,filename_suffix]

[,number_field_width]

Starts a data collection series which is triggered by the user’s input

trigger pulses (usually timed to the experimental conditions, but

also could be triggered asynchronously using a pulse generator). A

background image is required to have already been acquired.

Exposure_parameter has the following possibilities:

Exposure_Parameter Action

0 (integer) Frame Triggered Mode. Rising

edge input trigger causes frame

transfer/readout and acquisition of

next image.

1 (integer) Bulb Mode. Rising edge of input

trigger starts image acquisition.

Falling edge causes frame transfer /

readout.

T (floating point

number)

Timed Triggered Mode. Floating

point number (time T) is used as an

exposure time. Receiving input

trigger causes frame transfer /

readout, and each exposure lasts

time T.

N_frames is the number of frames in the sequence (default 1).

First_frame_number is the number of the first frame for the

filename (default 1). Filenames are defined as [filename

base][number field][filename suffix] where number_field_width is

an integer that defines the number of digits of the field.

Legacy Remote Mode for HS, v. 0.1

Copyright © 2012-2013, Rayonix, L.L.C.

6

start_series_timed

[,n_frames]

[,first_frame_number]

[,integration_time]

[,interval_time]

[,filename_base]

[,filename_suffix]

[,number_field_width]

Starts a data collection series which is timed by the detector’s

internal clock (asynchronous to the user’s experiment). A

background image is required to have already been acquired.

N_frames is the number of frames in the sequence (default 1).

First_frame_number is the number of the first frame for the

filename (default 1). Integration_time is the time duration of each

exposure. Interval_time is the time between the starting of each

exposure (must be equal to or greater than integration_time).

Filenames are defined as [filename base][number_field][filename

suffix] where number_field_width is an integer that defines the

number of digits of the field.

set_readout_mode,flag

Program will set the readout mode to one of the following values:

Flag Readout

Mode

Gain Speed Read

bits

0 Standard norm norm 16

1 High Gain high norm 16

2 Low Noise high med 16

3 HDR high low 18

Note that some data processing programs may need to be updated

to read 18 bit HDR (High Dynamic Range) mode files.
get_readout_mode

Returns the current readout mode setting, with flags defined above

in set_readout_mode section.
set_gating,flag During a triggered data series collection, this option uses the 2

nd

input trigger as a gate to make the detector insensitive to framing

triggers on the 1
st
 input trigger.

Flag Action

0 Not gated. Triggers from input trigger 1 function

normally.

1 Gated. When input trigger two is in TTL high

state, framing triggers from input trigger one will

be ignored.

get_gating The current gating setting (integer) is returned.
end_automation hsserver_legacy will exit remote mode.

Note on command handling by server application

In addition to the above commands, it is recommended that any server application implements

the following commands (already implemented in the provided marccd_server_socket:

Command to server program Action

get_state same as above, but queries from the client should be answered

directly by the server without querying hsserver_legacy.

get_size same as above, but queries from the client should be answered

directly by the server without querying hsserver_legacy.

get_size_bkg same as above, but queries from the client should be answered

directly by the server without querying hsserver_legacy.

Legacy Remote Mode for HS, v. 0.1

Copyright © 2012-2013, Rayonix, L.L.C.

7

get_frameshift same as above, but queries from the client should be answered

directly by the server without querying hsserver_legacy.
get_bin same as above, but queries from the client should be answered

directly by the server without querying hsserver_legacy.
get_state_hist (Implemented completely in the server.) Anwers with the

current state and the most recent previous state, separated by

commas. (See get_state.)

State and status values in remote mode version 1

In the version 1 protocol, the status of each task is represented in a 4 bit field in the 32 bit state

value. To use version 1 instead of version 0, include the appropriate configuration file,

marccd_server_v1.conf, instead of the older marccd_server.conf file. This file contains the

parameter “remote_mode_version” set to 1.

The task values are:

Task Number Task

0 TASK_ACQUIRE

1 TASK_READ

2 TASK_CORRECT

3 TASK_WRITE

4 TASK_DEZINGER

5 TASK_SERIES

The status bits for each task are:

Task Status Bit Task Status

0x1 TASK_STATUS_QUEUED

0x2 TASK_STATUS_EXECUTING

0x4 TASK_STATUS_ERROR

0x8 TASK_STATUS_RESERVED

Therefore, the state value looks like Figure 2, with eight four-bit fields

Figure 2 - State fields in remote mode version 1

Examples state values returned by get_state:

Idle 0x00000000

Busy (interpreting command) 0x00000008

Error (command not understood) 0x00000007

Acquiring 0x00000010

unused unused dezinger write correct read state acquire

Legacy Remote Mode for HS, v. 0.1

Copyright © 2012-2013, Rayonix, L.L.C.

8

Reading 0x00000200

Reading w/correct and write queued 0x00011200

Correcting w/write queued: 0x00012000

Error writing file 0x00040000

These are the C definitions of masks for looking at task state bits:

#define STATUS_MASK 0xf

#define TASK_STATUS_MASK(task) (STATUS_MASK <<

(4*((task)+1)))

These are some convenient macros for checking and setting the state of each task. They are used

in the hsserver_legacy code and can be used in the client code:

#define TASK_STATUS(current_status, task) (((current_status)

& TASK_STATUS_MASK(task)) >> (4*((task) + 1)))

#define TEST_TASK_STATUS(current_status, task, status)

(TASK_STATUS(current_status, task) & (status))

The following is an example of pseudo C code to do an exposure sequence:

/* Get a backround frame */

 /* Wait for detector to NOT be reading */

 do {

 /* send: get_state */

 /* put result in state */

 } while (TEST_TASK_STATUS(state, TASK_READ,

TASK_STATUS_EXECUTING));

 /* send: readout,1 */

/* Get a 2nd backround frame - This (readout; dezinger) can be

repeated if desired */

 /* Wait for detector to NOT be reading */

 do {

 /* send: get_state */

 /* put result in state */

 } while (TEST_TASK_STATUS(state, TASK_READ,

TASK_STATUS_EXECUTING));

 /* send: readout,2 */

/* Dezinger to combine 2 background frames into low noise dezingered

 * background frame */

 /* Wait for detector to NOT be reading */

 do {

 /* send: get_state */

Legacy Remote Mode for HS, v. 0.1

Copyright © 2012-2013, Rayonix, L.L.C.

9

 /* put result in state */

 } while (TEST_TASK_STATUS(state, TASK_READ,

TASK_STATUS_EXECUTING));

 /* send: dezinger,1 */

/* Get a sequence of data frames */

 while(1) {

 /* Wait for detector to NOT be acquiring (i.e. it has at least

 * started the previous read) */

 do {

 /* send: get_state */

 /* put result in state */

 } while (TEST_TASK_STATUS(state, TASK_ACQUIRE,

TASK_STATUS_EXECUTING));

 /* Start detector frame acquisition */

 /* send: start */

 /* Wait for detector to start acquiring (this is very

 * important, so that no X-rays are on the detector during

 * readout; here could be a delay of approximately the

 * readout time) */

 do {

 /* send: get_state */

 /* put result in state */

 } while (!TEST_TASK_STATUS(state, TASK_ACQUIRE,

TASK_STATUS_EXECUTING));

 /* Do exposure "stuff" here */

 /* End acquisition by starting readout, (correction and write

 * will be automatically queued and executed.) */

 /* send: readout,0,filename */

 }

Information on background frames and some sample data collection routines

The following are possible sequences of commands that you may implement in your remote

mode control of hsserver_legacy. We assume here that your facility has implemented its own

shutter control.

Either a “bias” frame (a background with zero integration time) or a non-zero time “dark” frame

must always be collected and put in the Background buffer, to be subtracted from the data.

Because of the extremely low CCD operating temperature, our X-ray detectors have minimal

Legacy Remote Mode for HS, v. 0.1

Copyright © 2012-2013, Rayonix, L.L.C.

10

dark current; thus taking the time to collect a dark frame (as opposed to a bias frame) is usually

not necessary, even for very long x-ray exposure times of data.

Here is the simplest and quickest method of collecting a Background image (not recommended):

 [CLOSE SHUTTER] (make sure shutter is closed)

 start (start integration)

 readout,1 (read data into both raw and background buffers)

The reason it is not recommended is that this method will potentially have zingers in the image.

Zingers in the background will be subtracted from data images, leaving the final images with

zero intensity spots. In addition, one background can be used multiple times and therefore a

zinger in a background will contaminate several images.

Here is a sequence that will make a dezingered bias frame (recommended method):

 [CLOSE SHUTTER] (make sure shutter is closed)

 start (start integration)

 readout,2 (read and copy to Scratch buffer)

 start

 readout,1 (read and copy to Background buffer)

 dezinger,1 (dezinger from Background and Scratch data, put

image in Background buffer)

The background doesn't have to be retaken for every data image taken, but generally should be

retaken at the start of every new data set, or once every half hour, whichever is sooner

(depending on the thermal stability of the hutch). For the SX Series detector, if a mismatch in the

level of the 4 quadrants of data frames is noticed, the bias is probably drifting and should be

recollected (and maybe should be set to be collected more often).

To collect a data image:

 start (start integration)

 [OPEN SHUTTER]

 [WAIT DESIRED TIME]

 [CLOSE SHUTTER]

 readout,0,FILENAME (read data into raw frame buffer; queue the

correction; corrected data are written to the

filename)

Note that in normal operation, neither the background frame nor the raw (uncorrected) data

frame need to be saved.

Here is a sequence of commands for taking a dezingered data frame:

Legacy Remote Mode for HS, v. 0.1

Copyright © 2012-2013, Rayonix, L.L.C.

11

 start (start first integration)

 [OPEN SHUTTER]

 [WAIT TIME1]

 [CLOSE SHUTTER]

 readout,2 (read data into raw buffer and copy to Scratch)

 start (start second integration)

 [OPEN SHUTTER]

 [WAIT TIME2]

 [CLOSE SHUTTER]

 readout,0 (read data into raw frame buffer)

 dezinger,0 (dezinger from raw and Scratch data; data sent

to raw buffer)

 correct (apply correction; data sent to "corrected" buffer)

 writefile,IMAGE,1 (write data from corrected frame buffer to file)

The dezinger operation goes through every pixel of the two (or multiple) separate reads of the

detector, and compares the values. If the two values are very different, as determined by a

statistical test, then the lower value is accepted and the higher value is discarded. If the values

are statistically close enough, then they are averaged.

Because a statistical test is used, special care must be taken to make dezingered data frames.

Each exposure must truly be the same (same X-ray dose, same movement of the sample or no

movement of the sample, and very little decay or other change in sample). Otherwise the

dezinger operation will yield unpredictable results.

If the source has constant intensity, then TIME1 = TIME2 = total_time/2. However, if the source

has a short decay time, then the times must be TIME2>TIME1, calculated so that that both

frames have equal dose, within a few percent.

Compiling the sample programs

The source programs to run hsserver_legacy are typically located in

/opt/rayonix/src/marccd_server. Along with these instructions you should obtain a tar file called

example_remote_server.tgz). If you have not already done so, unzip and untar the file in a new

directory by typing “tar -zxvf example_remote_server.tgz.”

Included in the untarred files will be:

dsmar_utils.c

dsmar_utils.h

Makefile

Makefile.bak

marccd.c

marccd_client_socket.c

Legacy Remote Mode for HS, v. 0.1

Copyright © 2012-2013, Rayonix, L.L.C.

12

marccd_server_pipe.c

marccd_server_socket.c

remote_mode_manual.pdf

socket_utils.c

socket_utils.h

Before compiling any programs, type “make depend” in the current directory to update the

dependencies in the Makefile to match the compiler libraries on your computer.

Compile marccd_client_socket.c and marccd_server_socket.c by typing “make

marccd_client_socket” and “make marccd_server_socket.” The file

marccd_server_pipe.c is also provided as a sample to show how a connection can be made with

hsserver_legacy using pipes, but in the example that follows, the programs with socket

connections are used.

Compliled versions of marccd_server_socket and marccd_client_socket should be installed in

/opt/rayonix/bin.

