
Measurement of Performance of areaDetector Plugin Architecture

Mark Rivers

June 21, 2013

These measurements were designed to determine how effectively the areaDetector plugins use
multiple cores on multi-core Linux and Windows systems. The measurements were made using
the SVN revision 16620 or areaDetector, which was the HEAD version on this date. This is
essentially the same as areaDetector R1-9-1.

The simDetector was used to produce images at varying rates. The simDetector was configured
to produce 1024x1024 8-bit monochrome images. The AcquireTime was 0.001 s, and the
AcquirePeriod was adjusted to control the frame rate. The ImageMode was “Multiple”, and a
fixed number of frames were acquired for each test. No XML attribute file was used. The
configuration of the simDetector is shown in the following medm screen shot:

For the first set of measurements the following plugin configuration was used.

The Image1, PROC1, ROI[1-4], STATS[1-5] plugins were enabled, and all other plugs were
disabled. All file writing plugins were disabled.

The PROC1 plugin was configured to get its data from the entire detector (SIM1) and to average
100 frames as shown below.

The ROI plugins were each configured to extract a 512x512 subset of the images, each extracting
one of the 4 quadrants of the simDetector. Scaling, Auto-Size, and Reverse were disabled. For
example ROI1 was configured as follows:

The statistics plugins were configured to compute the basic statistics and the centroid, but not the
profiles or histogram. STATS[1-4] get their data from ROI[1-4]. STATS5 gets its data from
SIM1, the entire detector. The configuration of STATS1 is shown below.

Performance Using Linux

Using the configuration shown above the performance was measured as a function of the
AcquirePeriod, which controls the frame rate of the simDetector.

Table 1 summarizes the measurements on a Linux system with dual quad-core CPUS (Intel(R)
Xeon(R) CPU, E5630 @ 2.53GHz). The system thus has 8 physical cores, but has hyper-
threading enabled, and so has 16 virtual cores.

Table 1. Linux system with dual quad-core CPUS (Intel(R) Xeon(R) CPU, E5630 @
2.53GHz)

Acquire
Period

0.05 0.02 0.01 0.005 0.002

Frames 1000 10000 10000 10000 10000
Detector
Frames/s

20 50 99 196 440

CPU % 300 500 600 800 1050
Frames
dropped

Image1 0 0 0 0 241
PROC1 0 3790 6965 8617 9484
ROI1 0 0 0 0 7
ROI2 0 0 0 0 11
ROI3 0 0 0 0 0
ROI4 0 0 0 0 0
STATS1 0 0 0 3174 7555
STATS2 0 0 0 2961 7470
STATS3 0 0 0 2964 7453
STATS4 0 0 0 2938 7508
STATS5 146 6642 7547 8848 9582

At 20 frames/s only the STATS5 plugin drops any frames (about 15%), and the system is using
300% of the CPU, or 3 cores.

At 50 frames/s the PROC1 plugin is dropping about 28% of the frames and the STATS5 plugins
is dropping about 66% of the frames. The system is using 500% of the CPU, or 5 cores.

At 99 frames/s the PROC1 plugin is dropping about 70% of the frames and the STATS5 plugins
is dropping about 75% of the frames. The system is using 600% of the CPU, or 6 cores.

At 196 frames/s both the PROC1 and all of the STATS plugins are dropping 30%-88% of the
frames, and the system is using 900% of the CPU, or 9 cores.

At 440 frames/s the Image1 and ROI plugins are also beginning to drop frames, and the system is
using 1050% of the CPU, or 10.5 cores.

The above table shows close to ideal behavior as the frame rate increases. The rate at which the
simDetector is generating frames is very close to the inverse of the AcquirePeriod. Even at
0.002 seconds when it should have generated 500 frames/s it is generating 440 frames/sec, which
is 88% of the theoretical rate. This shows that the simDetector thread is not being slowed down
by the plugins, which are saturating their threads and dropping up 75%-95% of the frames.

A simple view of the system is that there are 11 plugins, each running in its own thread, plus the
simDetector thread that computes the images. When the system is running at its maximum
possible rate there should thus be 12 cores running at 100% CPU, or 1200% CPU time in “top”.
In fact we reached 1050% CPU, or 10.5 cores, and at the point the ROI threads were not
saturated since they are dropping only a few frames.

Conclusions: the areaDetector plugin architecture and the Linux scheduler are not getting in the
way of nearly ideal scaling as the frame rate increases.

Performance Using Windows

The Windows minimum thread sleep time is 0.01 second, so it is not possible to achieve frame
rates above 65 frames/s until the sleep time is actually 0, at which time the system goes to 100%
CPU utilization. Because of this I changed the configuration above slightly. The simDetector
images were increased to 2048x2048, and the ROIs extracted 1024x1024 quadrants from the
detector.

Table 2 summarizes the measurements on a Windows 7 64-bit computer system with dual quad-
core CPUS (Intel(R) Core(TM) i7-2820QM CPU@ 2.30GHz). The system thus has 8 physical
cores, and does not have hyper-threading, so has 8 cores total..

Table 2. Windows 7 64-bit computer system with dual quad-core CPUS (Intel(R)
Core(TM) i7-2820QM CPU@ 2.30GHz).

Acquire
Period

0.05 0.02 0.015 .005 0.001
(AcquireTime=0)

Frames 2000 2000 10000 10000 10000
Detector
Frames/s

19 38 55 65 150

CPU % 30 43 61 77 99
Frames
dropped

Image1 0 0 0 5951
PROC1 97 1068 7152 7781 9274
ROI1 0 0 0 371
ROI2 0 0 0 2283
ROI3 0 0 0 603
ROI4 0 0 0 2336
STATS1 0 0 0 5577
STATS2 0 0 0 2598
STATS3 0 0 0 5604
STATS4 0 0 0 2968
STATS5 0 786 6322 7134 9241

The CPU numbers reported on Windows is the percentage of all the cores, so 100% means all
cores saturated. This would be equivalent to 800% on an 8 core Linux system

At 20 frames/s only the PROC1 plugin drops any frames (about 5%), and the system is using
30% of the CPU, or 2.4 cores.

At 38 frames/s the PROC1 plugin drops about 53% of the frames, and the STATS5 plugin drops
about 39% of the frames. The system is using 43% of the CPU, or 3.4 cores.

At 55 frames/s the PROC1 plugin drops about 72% of the frames, and the STATS5 plugin drops
about 63% of the frames. The system is using 61% of the CPU, or 4.9 cores.

At 65 frames/s the PROC1 plugin drops about 78% of the frames, and the STATS5 plugin drops
about 71% of the frames. The system is using 77% of the CPU, or 6.2 cores.

In order to achieve a very high frame rate I had to set AcquireTime=0 and AcquirePeriod=.001.
Under these conditions the system is 100% CPU busy. But it can still be seen that the
simDetector thread is not being held up by the plugins. As on Linux the PROC1 and STATS5
plugins are dropping over 90% of the frames, but other plugins and the simDetector main thread
are not being held back by these plugins.

Conclusion: the areaDetector plugin architecture and the Windows scheduler are not getting in
the way of nearly ideal scaling as the frame rate increases.

Performance with File Plugins Enabled

These tests were all done under the conditions detailed for Windows above, i.e. 2048x2048
frames, 8-bit. The ROI plugins were each, extracting a 1024x1024 subregion., each a different
quadrant.

The following are the results on Linux with AcquirePeriod=0.005, 2000 frames

Table 3. Linux system with dual quad-core CPUS (Intel(R) Xeon(R) CPU, E5630 @
2.53GHz)

Acquire
Period

0.02 0.02 0.02 .02 0.02 0.02

Frames 2000 2000 2000 2000 2000 2000
File plugin None TIFF netCDF

single
netCDF
stream

HDF5 single HDF5
stream

Total time 41 42 53 40 58 41
Detector
Frames/s

49 48 37.7 50 34.5 49

CPU % 790 820 790 840 720 840
Frames
dropped

Image1 0 0 0 0 0 0
PROC1 1688 1694 1594 1795 1553 1689
ROI1 0 0 0 0 0 0
ROI2 0 0 0 0 0 0
ROI3 0 0 0 0 0 0
ROI4 0 0 0 0 0 0
STATS1 1635 1617 1476 1619 1444 1641
STATS2 1252 1281 1017 1279 914 1258
STATS3 541 566 204 574 188 512
STATS4 480 546 182 557 145 571
STATS5 1746 1738 1662 1743 1627 1748
TIFF1 0 461 0 0 0
NetCDF1 0 0 132 238 0
HDF1 0 0 0 0 109 208

The performance with the netCDF or HDF5 plugins operating in Stream mode is the same as
with no file writing plugins enabled. The total time for 2000 images is 41 seconds with no
plugins, or with the netCDF or HDF5 plugin in Stream mode. The CPU usage is 800-840%, but
the file writers do not slow down the simDetector thread that is computing the images.

However, when writing individual netCDF or HDF5 files it slows down the simDetector by
almost 50%, increasing the time for 2000 images from 41 seconds to 58 seconds.

The following are the results on Windows with AcquirePeriod=0.005, 2000 frames

Table 4. Windows 7 64-bit computer system with dual quad-core CPUS (Intel(R)
Core(TM) i7-2820QM CPU@ 2.30GHz).

Acquire
Period

0.005 0.005 0.005 .005 0.005 0.005

Frames 2000 2000 2000 2000 2000 2000
File plugin None TIFF netCDF

single
netCDF
stream

HDF5 single HDF5
stream

Total time 31.3 188 157 31.3 159 31.4
Detector
Frames/s

63.9 10.6 12.7 63.9 12.6 63.7

CPU % 65 20 20 90 25 85
Frames
dropped

Image1 0 0 0 0 0 0
PROC1 1515 320 310 1537 241 1559
ROI1 0 0 0 0 0 0
ROI2 0 0 0 0 0 0
ROI3 0 0 0 0 0 0
ROI4 0 0 0 0 0 0
STATS1 0 0 0 0 0 1185
STATS2 0 0 0 0 0 335
STATS3 0 0 0 0 0 0
STATS4 0 0 0 0 0 0
STATS5 1379 242 181 1407 153 1433
TIFF1 0 418 0 0 0
NetCDF1 0 0 203 1041 0
HDF1 0 0 0 0 0 884

The performance with the netCDF or HDF5 plugins operating in Stream mode is the same as
with no file writing plugins enabled. The total time for 2000 images is 31.3 seconds with no
plugins, or with the netCDF or HDF5 plugin in Stream mode. The CPU usage is 85-90%, but
the file writers do not slow down the simDetector thread that is computing the images.

However, there is clearly a serious problem when individual files are being written. It does not
matter if they are TIFF, netCDF, or HDF5. In all cases when writing individual files the total
time increases by a factor of 5-6, from 31 seconds to 157-188 seconds.

Conclusion 1: The file writing plugins do not slow down the simDetector thread if they are
running in Stream mode, where there is a single file creation for 2000 frames. This is true on
Linux and Windows

Conclusion 2: There appears to be a lock problem when files are created, so that if individual
files are being written it slows down the simDetector thread. The slowdown is only about 50%
on Linux, but is a factor of 5-6 on Windows. Because the simDetector thread is running more
slowly the other plugins do not drop as many frames. This problem needs to be investigated and
fixed.

Conclusion 3: The throughput of netCDF and HDF5 file writers in Stream mode were as follows:

netCDF, Windows: (2000-1041)/31.3*4MB = 122 MB/s

HDF5, Windows: : (2000-884)/31.4*4MB = 142 MB/s

netCDF, Linux: (2000-238)/40*4MB = 176 MB/s

HDF5, Linux: : (2000-208)/41*4MB = 175 MB/s

The Linux machine is a server with fast disks, the Windows machine is a laptop with relatively
slow disk.

