
areaDetector: A module for 
EPICS area detector support

Mark Rivers 

GeoSoilEnviroCARS, Advanced Photon Source

University of Chicago



• Motivation & goals for areaDetector 
module

• Overview of architecture
• Drivers for detectors & cameras
• Plugins for real-time processing
• Viewers and other clients
• Demo with simDetector and Prosilica 

camera

areaDetector Talk Outline



areaDetector - Motivation
• 2-D detectors are essential components of synchrotron beamlines

– Sample viewing cameras, x-ray diffraction and scattering detectors, x-ray 
imaging, optical spectroscopy, etc.

• EPICS is a very commonly used control system on beamlines, (APS, DLS, 
SLS, SLAC, NSLS-II, Shanghai, etc.)

• Need to control the detectors from EPICS (useful even on non-EPICS 
beamlines, since other control systems like SPEC etc. can talk to EPICS)

• Previously several packages available, each typically restricted to a small set 
of detectors (Flea, Pilatus, marCCD, etc.)

• Clear advantages to an architecture that can be used on any detector, re-using 
many software components 

• Providing EPICS control allows any higher-level client to control the 
detector and access the data (CSS, SPEC, medm, Python scripts, IDL 
programs, etc)



areaDetector - Goals
• Drivers for many detectors popular at synchrotron beamlines

– Handle detectors ranging from >500 frames/second to <1 frame/second

• Basic parameters for all detectors
– E.g. exposure time, start acquisition, etc.
– Allows generic clients to be used for many applications

• Easy to implement new detector
– Single device-driver C++ file to write.  EPICS independent. 

• Easy to implement detector-specific features
– Driver understands additional parameters beyond those in the basic set

• EPICS-independent at lower layers.
• Middle-level plug-ins to add capability like regions-of-interest 

calculation, file saving, etc.  
– Device independent, work with all drivers
– Below the EPICS layer for highest performance



• NDArray
– N-Dimensional array.  

• Everything is done in N-dimensions (up to 10), rather than 2.  This is 
needed even for 2-D detectors to support color. 

– This is what plug-ins callbacks receive from device drivers.
• NDAttribute

– Each NDArray has a list of associated attributes (metadata) that 
travel with the array through the processing pileline.  Attributes can 
come from driver parameters, any EPICS PV, or any user-written 
function.

• e.g. can store motor positions, temperature, ring current, etc. with each 
frame.  

• NDArrayPool
– Allocates NDArray objects from a freelist
– Plugins access in readonly mode, increment reference count
– Eliminates need to copy data when sending it to callbacks.

areaDetector – Data structures



ADBase
.template

Standard asyn device support
(device-independent)

Vendor API

Driver 

Channel Access Clients (medm, IDL, ImageJ, SPEC, etc.)

EPICS areaDetector Architecture

xxxDriver
.template

Hardware

C++ Base classes 
(NDArray, asynPortDriver, 
asynNDArrayDriver, 
ADDriver, NDPluginDriver)

Layer 5 
Standard 
EPICS records

Layer 4
EPICS device 
support

Layer 3 
Plug-ins

Layer 1  
Hardware API

Layer 2  
Device drivers

Layer 6
EPICS CA clients

StdArrays
File 

(netCDF, TIFF, JPEG, 
HDF5)

NDPluginXXX.
template

Channel access
Record/device support
asynInt32, Float64, Octet

asynGenericPointer (NDArray)
asynXXXArray

C library calls

NDPluginBase
.template

ROIProcess



Look at NDArray.h

Look at NDAttribute.h

Look at an XML attribute file

areaDetector – Data structures



– Each box above is a separate git repository
– Can be released independently
– Hosted at http://github.com/areaDetector project
– Each repository is a submodule under areaDetector/areaDetector

areaDetector Organization 
(R2-x and later)

areaDetector
Top-level module 

RELEASE files, documentation, Makefile

ADCore
Core module

Base classes, plugins, 
simDetector, documentation

ADBinaries
Binary libraries for 
Windows (HDF5, 
GraphicsMagick)

ADProsilica
Prosilica driver

ADPilatus
Pilatus driver

…



Source Code Organization on github

• https://github.com/areaDetector  is top-level project
• Contains configure/ directory where paths and 

versions of supporting software are defined
• Contain .gitmodules to define submodules that will 

be cloned with git clone –recursive
• Contains documentation directory that builds and 

installs documentation
• Contains a top-level Makefile to build all or selected 

submodules



Detector drivers
• ADDriver (in ADCore)

– Base C++ class from which detector drivers derive.  Handles details 
of EPICS interfaces, and other common functions.

• Simulation driver (in ADCore)
– Produces calculated images up to very high rates.  Implements nearly 

all basic parameters, including color.  Useful as a model for real 
detector drivers, and to test plugins and clients.

• Prosilica driver (ADProsilica)
– Gigabit Ethernet cameras, mono and color
– High resolution, high speed, e.g. 1360x1024 at 30 frames/second = 

40MB/second.
• Firewire (IEEE-1396 DCAM) (ADFireWireWin, 

firewireDCAM)
– Vendor-independent Firewire camera drivers for Linux and 

Windows
• Roper driver (ADRoper)

– Princeton Instruments and Photometrics cameras controlled via 
WinView



Detector drivers (continued)
• PVCAM driver (ADPvCam)

– Princeton Instruments and Photometrics cameras controlled via 
PVCAM library

• Pilatus driver (ADPilatus)
– Pilatus pixel-array detectors. 

• marCCD driver (ADmarCCD)
– Rayonix (MAR-USA) CCD x-ray detectors

• ADSC driver (ADADSC)
– ADSC CCD detectors

• mar345 driver (ADmar345)
– marResearch mar345 online image plate

• Perkin-Elmer driver (ADPerkinElemer)
– Perkin-Elmer amorphous silicon flat-panel detectors



Detector drivers (continued)
• Bruker driver (ADBruker)

– Bruker detectors controlled via their Bruker Instrument Server (BIS)

• LightField driver (ADLightField)
– Princeton Instruments detectors controlled via their LightField

application using the Microsoft Common Language Runtime to 
automate it

• PSL driver (ADPSL)
– Photonic Sciences Limited detectors

• URL driver (ADURL)
– Driver to display images from any URL.  Works with Web cameras, 

Axis video servers, static images, etc.

• Andor driver (ADAndor)
– Driver for Andor CCD cameras

• Andor3 driver (ADAndor3)
– Driver for Andor sCMOS cameras with V3 of their SDK



Detector drivers (continued)
• Point Grey driver (ADPointGrey)

– Driver for GigE, USB-3.0, USB-2.0, and Firewire cameras from 
Point Grey Research

• Pixirad driver (ADPixirad)
– Driver for CdTe pixel-array detectors from Pixirad

• Generic GigE driver (aravisGigE)
– Should work with any GigEVision compliant camera.  From Tom 

Cobb at Diamond.  Uses Aravis reverse-engineered GigEVision
library

• PVAccess (EPICS V4) driver
– Receives NTNDArrays over PVAccess
– Allows plugins to run on other processes or machines from the 

areaDetector driver



ADBase.adl – Generic control screen

• Works with any 
detector

• Normally write custom 
control for each 
detector type to hide 
unimplemented 
features and expose 
driver-specific features



Pilatus specific control screen



MAR-345 specific control screen



LightField driver



LightField driver



URL Driver
• Driver that can read images from any URL.  
• Can be used with Web cameras and Axis video servers. 
• Uses GraphicsMagick to read the images, and can thus handle a large number 

of image formats (JPEG, TIFF, PNG, etc.). 



Andor Driver
• Supports USB and PCI CCD 

cameras from Andor. 
• Runs on 32-bit and 64-bit Linux 

and 32-bit and 64-bit Windows. 
• Original version by Matt Pearson 

from Diamond Light Source. 



Perkin Elmer Flat Panel Driver



• New driver for all cameras from Point Grey using their 
FlyCap2 SDK.

• Firewire, GigE and USB 3.0
• High performance, low cost

R2-0: Point Grey driver



- e2v EV76C570 CMOS sensor
- Global shutter
- 29 x 29 x 30 mm
- Power Over Ethernet
- 4.5 micron pixels
- 1600 x 1200 pixels, color (mono)
- 47 frames/s
- $595

- 5X cheaper than comparable Prosilica cameras we bought in the past

Point Grey GigE Camera
BlackFly PGE-20E4C



• 1920 x 1200 global shutter CMOS
• Sony IMX174 1/1.2
• No smear • Distortion-free
• Dynamic range of 73 dB
• Peak QE of 76%
• Read noise of 7e-
• 12-bit or 8-bit data
• Max frame rate of 162 fps 

– ~356 MB/S,  >3X faster than GigE

• USB 3.0 interface
• $1,295

Point Grey USB-3.0 Camera
Grasshopper3 GS3-U3-23S6M



Point Grey Driver



Point Grey Driver (Grasshopper3 camera)



Vertical slice

Horizontal slice

Pink Beam, Mirror=2.0 mrad
• Mirror angle=2.0 mrad (Beads_Pink_H)
• 2 mm Al absorber
• 8-bit data
• 1 ms exposure time, 124 frames/s, 900 projections, 7.3 seconds total
• Rotation axis orientation corrected for mirror angle 



Plugins
• Designed to perform real-time processing of data, running in the EPICS 

IOC (not over EPICS Channel Access)
• Receive NDArray data over callbacks from drivers or other plugins
• Plug-ins can execute in their own threads (non-blocking) or in callback 

thread (blocking)
– If non-blocking then NDArray data is queued

• Can drop images if queue is full
– If executing in callback thread, no queuing, but slows device driver 

• Allows 
– Enabling/disabling
– Throttling rate (no more than 0.5 seconds, etc)
– Changing data source for NDArray callbacks to another driver or plugin

• Some plugins are also sources of NDArray callbacks, as well as 
consumers.

– Allows creating a data processing pipeline running at very high speed, each 
in a different thread, and hence in multiple cores on modern CPUs.



Plugins (continued)
• NDPlugInStdArrays

– Receives arrays (images) from device drivers, converts to standard arrays, e.g. 
waveform records.

– This plugin is what EPICS channel access viewers normally talk to.
• NDPluginROI

– Performs region-of-interest calculations
– Select a subregion.  Optionally bin, reverse in either direction, convert data type.
– Divide the array by a scale factor, which is useful for avoiding overflow when 

binning. 
• NDPluginColorConvert

– Convert from one color model to another (Mono, RGB1 (pixel), RGB2 (row) or 
RGB3 (planar) interleave)

– Bayer conversion removed from this plugin, now part of Prosilica and Point Grey 
drivers.

• NDPluginTransform
– Performs geometric operations (rotate, mirror in X or Y, etc.)



• NDPluginStats
– Calculates basic statistics on an array (min, max, sigma)
– Optionally computes centroid centroid position, width and tilt. 
– Optionally Computes X and Y profiles, including average profiles, 

profiles at the centroid position, and profiles at a user-defined cursor 
position.

– Optionally computes the image histogram and entropy 
• NDPluginROIStat

– Multiple ROIs with simple statistics in a single plugin
– More efficient when many ROIs are needed, e.g. for peaks in a 1-D 

energy spectrum
– Min, max, total, net, mean
– Time-series of each of these statistics

Plugins (continued)



• NDPluginProcess
– Does arithmetic processing on arrays
– Background subtraction. 
– Flat field normalization. 
– Offset and scale. 
– Low and high clipping. 
– Recursive filtering in the time domain. 
– Conversion to a different output data type.

• NDPluginOverlay
– Adds graphic overlays to an image. 
– Can be used to display ROIs, multiple cursors, user-defined boxes, 

text, etc. 

• ffmpegServer
– MJPEG server that allows viewing images in a Web browser.  From 

DLS.

Plugins (continued)



• NDPluginAttribute
– Extracts NDAttributes from NDArrays and publishes their values as 

ai records
– Can collect time-series arrays of the attribute values

• NDPluginCircularBuff
– Buffers NDArrays in a circular buffer
– Computes a trigger expression using up to 2 NDAttribute values
– When trigger condition is met then outputs NDArrays
– User-specified number of pre-trigger and post-trigger arrays to 

output
• NDPluginTimeSeries

– Accepts 1-D NDArrays[NumSignals] or 2-D 
[NumSignals,NewTimePoints] and appends to time-series buffer

– Operates in fixed length (stop when full) or circular buffer modes
– Optional time-averaging of input data

Plugins (continued)



• NDPluginFFT
– Computes FFT of 1-D or 2-D NDArrays
– Exports NDArrays containing the absolute value (power spectrum) 

of the FFT
– Exports 1-D arrays of the FFT real, imaginary, absolute values, and 

time and frequency data.
• NDPluginPVA

– Converts NDArrays to EPICS V4 NTNDArrays
– Exports the NtNDArrays over PVAccess with internal V4 server
– Can be used to send structured data to EPICS V4 clients
– When used with the PVAccess driver then areaDetector plugins can 

be run on different machine from the detector driver

Plugins (continued)



commonPlugins.adl All plugins at a glance



NDStdArrays plugin



ROI plugin



Statistics plugin



Statistics plugin (continued)



Overlay plugin



Overlay plugin



Overlay plugin



Overlay plugin

Centroid of laser pointer calculated by 
statistics plugin
Cursor overlay X, Y position linked to 
centroid



Processing plugin



Processing plugin
30 microsec exposure time

No filtering N=100 recursive average filter



Transform plugin

R2-1 changes
• Greatly simplified: just 

8 operations including 
null operation

• 13-85 times faster than 
previous releases 
depending on data type, 
color mode



Plugins: NDPluginFile
• Saves NDArrays to disk
• 3 modes:

– Single array per disk file
– Capture N arrays in memory, write to disk either multiple files or 

as a single large file (for file formats that support this.)
– Stream arrays to a single large disk file

• For file formats that support it, stores not just NDArray
data but also NDAttributes



Plugins: NDPluginFile
• File formats currently supported

– NDFileTIFF
• Supports any NDArray data type
• Stores NDAttributes as ASCII user tags

– NDFileJPEG
• With compression control

– NDFileNetCDF
• Popular self-describing binary format, supported by Unidata at UCAR

– NDFileHDF5
• Writes HDF5 files with the native HDF5 API, unlike the NeXus plugin which uses 

the NeXus API. Supports 3 types of compression.
• Supports using an XML file to define the layout and placement of NDArrays and 

NDAttributes in the HDF5 file
• R2-5 will support Single Writer Multiple Reader (SWMR).  Only supported on 

local file systems, GPFS, and Lustre (not NFS or SMB)



Plugins: NDPluginFile

• File formats currently supported
– NDFileNeXus

• Standard file format for neutron and x-ray communities, based on HDF5, which is 
another popular self-describing binary format; richer than netCDF

• May be deprecated in a future release since NeXus files can now be produced with 
the NDFileHDF5 plugin using an appropriate XML layout file

– NDFileMagick
• Uses GraphicsMagick to write files, and can write in dozens of file formats, 

including JPEG, TIFF, PNG, PDF, etc.
– NDFileNull

• Used only to delete original driver files when no other file plugin is running



File saving with driver
• In addition to file saving plugins, many vendor 

libraries also support saving files (e.g. marCCD, 
mar345, Pilatus, etc.) and this is supported at the driver 
level.

• File saving plugin can be used instead of or in addition 
to vendor file saving 

– Can add additional metadata vendor does not support
– Could write JPEGS for Web display every minute, etc.



NDPluginFile display: TIFF

Example: saving 82 frames/second of 1024x1024 video to 
TIFF files, a few dropped frames.



NDPluginFile display: netCDF

Example: streaming 47 frames/second of 1024x1024 video to 
netCDF files, no dropped frames.



NDFileHDF5



NDFileHDF5
XML file to define file layout

<xml>
<group name="entry"> 
<attribute name="NX_class" source="constant" value="NXentry" type="string"></attribute> 
<group name="instrument"> 
<attribute name="NX_class" source="constant" value="NXinstrument" type="string"></attribute> 
<group name="detector"> 
<attribute name="NX_class" source="constant" value="NXdetector" type="string"></attribute> 
<dataset name="data" source="detector" det_default="true"> 
<attribute name="NX_class" source="constant" value="SDS" type="string"></attribute> 
<attribute name="signal" source="constant" value="1" type="int"></attribute> 
<attribute name="target" source="constant" value="/entry/instrument/detector/data" 

type="string"></attribute> 
</dataset> 
<group name="NDAttributes"> 
<attribute name="NX_class" source="constant" value="NXcollection" type="string"></attribute> 
<dataset name="ColorMode" source="ndattribute" ndattribute="ColorMode"> 
</dataset> 

</group>          <!-- end group NDAttribute --> 
</group>            <!-- end group detector --> 
<group name="NDAttributes" ndattr_default="true"> 
<attribute name="NX_class" source="constant" value="NXcollection" type="string"></attribute> 

</group>            <!-- end group NDAttribute (default) --> 
<group name="performance"> 
<dataset name="timestamp" source="ndattribute"></dataset> 

</group>            <!-- end group performance --> 
</group>              <!-- end group instrument --> 
<group name="data"> 
<attribute name="NX_class" source="constant" value="NXdata" type="string"></attribute> 
<hardlink name="data" target="/entry/instrument/detector/data"></hardlink>
<!-- The "target" attribute in /entry/instrument/detector/data is used to 

tell Nexus utilities that this is a hardlink -->
</group>              <!-- end group data --> 

</group>                <!-- end group entry -->
</xml>



Viewers

• areaDetector allows generic viewers to be written 
that receive images as EPICS waveform records 
over Channel Access

• Current viewers include:
– ImageJ plugin EPICS_AD_Display.  ImageJ is a very 

popular image analysis program, written in Java, derived 
from NIH Image.

– IDL EPICS_AD_Display.
– ffmpegServer allows image display in any Web browser
– ffmpegViewer high-performance Qt-based viewer for 

MJPEG stream



ImageJ Viewer



Performance Example with Pilatus driver
• SPEC used to collect 1000 points using trajectory scanning mode with the 

Newport XPS motor controller. Hardware trigger of Pilatus from XPS.
• Relative scan of the chi axis from -2 degrees to +2 degrees with 1000 points at 

.02 seconds/point
• Coordinated motion of the phi, kappa and omega axes. 
• Theoretical time 20.0 second, actual time 20.8 seconds
• Includes time to save all 1000 images to disk (366 MB), Pilatus driver to read 

each file, correct bad pixels and flat field, compute ROIs, and post the ROIs and 
1000 images to EPICS.



Internals
Class hierarchy



ADCore R3-0
• Simplify NDPluginFile base class and way file saving 

works
– Remove the Single/Stream/Capture mode.

• Two parameters
– # NDArrays to save (already present)
– # NDArrays per file (new)
– This allows saving only 1 array per HDF5 file, which is not 

possible now in Stream mode.

• Capture mode can be replaced:
– Make input queue large enough OR
– Use new NDPluginCircularBuffer

• Will require modifying clients that are doing file saving, 
hence a major release number



Future Ideas
• Put more functionality into ADDriver base class

– Currently it does not do much, all code is in each driver for:
• Doing callbacks to plugins
• Processing new exposure time with writeFloat64 function

– writeFloat64 in ADDriver base class would call setExposure() in 
derived class

– Derived class would call ADDriver::doPluginCallbacks(), which 
would handle setting attributes, getting timestamp, calling plugins, 
etc.

• This is the way the Model 3 motor driver, which also uses 
asynPortDriver, is written

• Demultiplexor/multiplexor plugin
– Allow multiple plugins to work on the same data stream when it 

saturates a single core



• Architecture works well, easily extended to new detector 
drivers, new plugins and new clients

• Base classes, asynPortDriver, asynNDArrayDriver, 
asynPluginDriver actually are generic, nothing “areaDetector” 
specific about them.

• They can be used to implement any N-dimension detector, e.g. 
the XIA xMAP (16 detectors x 2048 channels x 512 points in a 
scan line)

• Can get documentation and pre-built binaries (Linux, 
Windows, Cygwin) from our Web site:
– http://cars.uchicago.edu/software/epics/areaDetector

• Can get code from github
– https://github.com/areaDetector

Conclusions



• Brian Tieman, John Hammonds (APS) Perkin-Elmer driver, 
NeXus file saving plugin, Roper PVCAM driver

• Tim Madden (APS) initial version of ImageJ viewer, PCO 
drivers

• Ulrik Pedersen, Matt Pearson, Tom Cobb, David Hickin, Alan 
Greer (Diamond and Observatory Sciences) ffmpeg plugin, 
aravisGigE driver, Linux Firewire driver, HDF5 plugin

• Bruno Martins (BNL) V4 plugin and driver
• Lewis Muir (APS IMCA CAT) ADSC CCD driver
• Chris Roehrig (APS) new NDPluginTransform
• Many others for enhancements and bug fixes
• NSF-EAR and DOE-Geosciences for support of GSECARS 

where most of this work was done 

Acknowledgments


