Subduction-related lavas have higher Fe3+/∑Fe than midocean ridge basalts (MORB). Hypotheses for this offset include imprint from subducting slabs and differentiation in thickened crust. These ideas are readily tested through examination of the time-dependent evolution of slab-derived signatures, thickening crust of the overriding plate, and evolving redox during subduction initiation. Here, we present Fe3+/ΣFe and volatile element abundances of volcanic glasses recovered from International Ocean Discovery Program (IODP) Expedition 352 to the Izu-Bonin-Mariana (IBM) forearc. The samples include forearc basalts (FAB) that are stratigraphically overlain by low- and high-silica boninite lavas. The FAB glasses have 0.18–0.85 wt% H2O, 75–233 ppm CO2, S contents controlled by saturation with a sulfide phase (602–1,386 ppm), Ba/La from 3.9-10, and Fe3+/ΣFe ratios from 0.136 to 0.177. These compositions are similar to MORB and suggest that decompression melting of dry and reduced mantle dominates the earliest stages of subduction initiation. Low- and high-silica boninite glasses have 1.51–3.19 wt% H2O, CO2 below detection, S contents below those required for sulfide saturation (5–235 ppm), Ba/La from 11 to 29, and Fe3+/∑Fe from 0.181 to 0.225. The compositions are broadly similar to modern arc lavas in the IBM arc. These data demonstrate that the establishment of fluid-fluxed melting of the mantle, which occurs in just 0.6–1.2 my after subduction initiation, is synchronous with the production of oxidized, mantle-derived magmas. The coherence of high Fe3+/∑Fe and Ba/La ratios with high H2O contents in Expedition 352 glasses and the modern IBM arc rocks strongly links the production of oxidized arc magmas to signatures of slab dehydration.
, 2021). Co-variation of slab tracers, volatiles and oxidation during subduction initiation. Geochemistry, Geophysics, Geosystems, 22, e2021GC009823. , , , , & (abstract